先进成像

激光与光电子学进展

基于氧化铟锡主动超表面的相位调制

高峰,朱晨岳,李景悦,吴春艳*,罗林保

合肥工业大学电子科学与应用物理学院, 安徽 合肥 230601

摘要 透明导电氧化物由于特殊的光学性能,已经被广泛地运用于光电器件中。在近红外波长范围内,其介电常数实 部将从正转变为负。在介电常数近零(ENZ)区域中,光与物质之间将产生强相互作用,由此将有望实现较宽的相位调 制。采用基于氧化铟锡(ITO)的金属-氧化物-半导体电容器(MOS)结构,通过施加0~5V的偏置电压,对界面附近 1 nm厚度内的载流子浓度进行调制,实现了在1470 nm处的接近265°的相位调控。在相位调制的基础上,探索了该结 构在光束偏转和聚焦方面的实际应用。此外,双栅型MOS结构的设计进一步拓宽了相位覆盖的范围。 关键词 超表面;透明导电氧化物;介电常数近零材料;场效应调制 中图分类号 O436 文献标志码 A doi: 10.3788/LOP202259.0405001

ITO-Based Active Metasurfaces with Phase Tunability

Gao Feng, Zhu Chenyue, Li Jingyue, Wu Chunyan^{*}, Luo Linbao

School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230601, China

Abstract Transparent conductive oxides have been widely used in optoelectronic devices owing to their special optical property. In near-infrared wavelength region, the real part of the dielectric constant will decrease from positive to negative. Within epsilon-near-zero (ENZ) region, strong interaction will occur between light and matter, and wide phase modulation will be achieved. Herein, using a bias voltage of 0–5 V, the carrier concentration within a region (thickness: 1 nm) near the interface of an ITO-based MOS structure was adjusted, and a phase modulation close to 265° in a 1470-nm wavelength was achieved. Based on this modulation, the practical applications of the proposed structure in the fields of beam deflection and focusing have been explored. Furthermore, a dual-gated MOS structure, which further expanded the phase coverage region, was designed.

Key words metasurfaces; transparent conductive oxide; epsilon-near-zero material; field effect modulation

1 引 言

超表面是一种亚波长谐振单元组成的具有特定 功能的二维平面结构。与依靠传播相位累积来实现 电磁波调制的传统光学设备相比,超表面具有超轻 超薄的优势。在过去的十年里,人们大量研究了超 表面及其在微波到可见光区域中的应用,包括超透 镜^[1-3]、全息图^[4-5]、光子自旋霍尔效应^[6]、涡旋光的产 生与检测^[7]等。通常,一旦被动超表面的尺寸确定 了,其功能和应用的频率范围就无法改变,这极大地 限制了实际应用。最近,通过电学^[8]、光学^[9]、热学^[10] 等方式的调制,实现了越来越多的可调超表面,诸如 石墨烯^[11-12]、液晶^[13]、相变材料^[14]和透明导电氧化 物^[15]等。Fan等^[11]通过调节Drude权重和碰撞频率, 改变石墨烯的电导率,从而实现太赫兹波段的吸收 增强。Komar等^[13]加热被液晶渗透的硅纳米盘介电 超表面,液晶的状态从向列型向各向同性变化,实现 了激光束角度从0°到12°的切换,效率达50%。

收稿日期: 2021-03-08; 修回日期: 2021-03-13; 录用日期: 2021-03-23 通信作者: *cywu@hfut.edu.cn 氧化铟锡(ITO)在可见光范围内具有很高的 透明度(>95%),电阻率低至10⁻⁴Ω·cm,是一种出 色的透明导电氧化物^[16]。它的载流子密度高达 10²¹ cm⁻³,并且介电常数近零区域的波长位于通信 波段。到目前为止,通过改变制造工艺(磁控溅 射^[17]、化学气相沉积^[18]、湿法工艺^[19]等)或通过外 加电场,可以改变ITO的光学和电学性质。相比 于改变制作工艺,电学调控的优势非常明显,它更 易于设备集成而且响应速度更快,对于近红外区域 的电磁波领域特别是通信、光学互连和传感^[20]领 域的主动调控具有显著的基础科学意义和实际 意义。

本文基于金属-氧化物-半导体电容器(MOS) 设计了电可调的ITO超表面,通过场效应调制实现 了表面电荷的变化。通过这一特性,单个天线可实 现接近265°的相位覆盖,探索了该结构在光束偏转 和聚焦方面的应用。在此基础上,为了进一步提高 相位覆盖的范围,设计了双栅型MOS超表面,实现 了约300°的相位覆盖。

2 MOS结构的设计

如图 1(a) 所示,电可调 ITO 超表面由位于金基 底和金纳米天线之间的 t_3 =20 nm 厚 ITO 层和 t_2 = 5 nm 厚氧化铝(Al₂O₃) 层组成,周期 p=400 nm,顶 层与基底的金电极厚度分别为 t_1 =50 nm 和 t_4 = 80 nm。使用电磁场有限元仿真方法,模拟了 TM 偏振垂直入射下的周期性 MOS 结构的反射率和相 位调制。在水平方向上设置周期边界条件,并在底 部和顶部应用完美匹配层(PML),厚度设置为入射 波长的一半;使用商业软件(Device-Lumerical Solutions 公司) 对泊松和漂移扩散方程进行数值求 解。ITO 被建模为半导体,带隙 E_{bg} 为 2.8 eV^[21],电 子亲和力 χ 为 5 eV,有效电子质量 m 设置成 0.5 m_e , 迁移率 μ_n 为 25 cm²/(V·s)。ITO 的介电常数可以 用 Drude模型^[22]来描述:

$$\varepsilon_{\text{ITO}} = \varepsilon_{\infty} - \frac{\omega_{p}^{2}}{\omega^{2} + \mathrm{i}\omega\Gamma},$$
(1)

$$\boldsymbol{\omega}_{\mathrm{p}}^{2} = \frac{Ne^{2}}{\boldsymbol{\varepsilon}_{0}m^{*}}, \qquad (2)$$

图1 电学仿真结果。(a)电可调ITO超表面示意图,这种MOS结构由金基板、ITO薄膜、Al₂O₃膜和金纳米天线组成;(b)不同电 压下载流子浓度分布示意图;(c)(d)在1470 nm 波长处,关于不同电压与深度的ITO介电常数分布图

Fig. 1 Electrical simulation results. (a) Schematic of electrically tunable ITO metasurface, the MOS structure consists of a gold back plane, a thin ITO film, a thin Al₂O₃ film, and gold stripe nanoantenna array; (b) spatial distribution of the carrier concentration under different applied voltages; (c)(d) distribution diagrams of the permittivity of ITO at different voltages and depths at a wavelength of 1470 nm

式中: ϵ_0 和 ϵ_∞ 分别代表真空和高频介电常数;N是载流 子密度;m^{*}为半导体中载流子的有效质量;e^{*}为电子电 荷; Γ 为阻尼常数,由电子散射造成的并与电子弛豫时 间有关。当偏置电压被施加到电容器的两端后,ITO 与Al₂O₃(ENZ区域)之间的界面处载流子浓度的空间 分布随电压的变化如图1(b)所示。显然,随着电压的 升高,界面处的载流子浓度增加,且随着离界面处距 离的增加而降低。对于没有外加电压的情况,在 ITO/Al₂O₃界面的 $\epsilon_{\rm rro}$ 的实部大于0,因此ITO在光学 上表现为介质的作用。当天线与ITO之间的偏压增 加到2V时, $\epsilon_{\rm rro}$ 的实部核减小到0。电压继续增加,超 过2V时,介电常数的实部变为负值,其完全表现为金 属特性,如图1(c)所示。图1(d)反映了介电常数虚部 的变化,表明电压的增加将带来更多的光损耗。

3 结果与讨论

为了更好地理解 MOS 电容器的工作原理, MOS 结构的能带如图 2 所示,其中 *E*_{FM} 为金属功函 数,*E*_c为导带,*E*_v为价带,*E*_i为本征费米能级,*E*_{FS}为 半导体功函数。当在电容器上加电压时,两个极板 上带相反电荷,并在氧化层中建立了电场。半导体 的表面会产生与金属板等量但异号的感应电荷,从 而形成厚度相当大的空间电荷区,该电荷区可屏蔽 外部电场。在不加电压情况下,由于半导体与金属 之间的功函数差,电子从ITO中扩散到金中,从而 能带向上弯曲,表面电子浓度小于内部热平衡值, 如图2(b)实线所示。随着电压的升高,表面能带将 向下弯曲(如虚线),表面费米能级将更接近导带, 进一步导致多数载流子在界面处集聚,如图2(c)所 示。从图2(d)可以看出,电压的增加使得ITO介电 常数实部经历了从正到负的变化。

使用 COMSOL 软件进行了不同电压下超表面 的场分布和反射相位的仿真。从图 3(a)中可以看出, 通过施加 0~5 V的栅极偏置,可以在 1470 nm 处实现 最宽的相位覆盖范围(265°)。通过仿真发现,随着电 压增加,相位增益基本消失。图 3(b)显示出在 1450 nm 和 1520 nm 之间存在 6个波谷,这主要是类 Fabry-Pérot(F-P)共振^[23]引起的。不同电压下谐振 波长的偏移完全是 ITO性质的变化导致的。当电压 为 0~2 V时,由于载流子的积累和介电常数实部的 降低,天线的等离子体共振移向较短的波长;随着电 压增加到 2 V,载流子浓度继续增加,ITO 表现出金 属性,这相当于有效介质层厚度减小^[24],磁共振向长 波长处移动。为了更加清楚地了解这种调制机理,计

图 2 带有电荷累积(虚线)和耗尽层(实线)的MOS结构。(a)MOS结构示意图;(b)能带图;(c)载流子密度曲线;(d)随着载流 子密度变化,介电常数的实部从正到负的变化曲线

Fig. 2 MOS structure with charge accumulation (dash) and charge depletion (solid). (a) Schematic of MOS structure; (b) energyband diagram; (c) carrier density curve; (d) as the carrier density increases or decreases at the interface, the real part of the permittivity changes from positive to negative

图 3 可调超表面的光学仿真结果。(a)反射相位与电压和波长的关系;(b)反射率与电压和波长的关系;(c)~(e) 0,2.5,5 V 偏压下,1470 nm波长处的电场 *E*,的空间分布

Fig. 3 Optical simulation results of adjustable metasurface. (a) Reflection phase as a function of voltage and wavelength;
(b) reflectance as a function of voltage and wavelength;
(c)-(e) spatial distribution of the electric field E_y at 1470-nm wavelength under applied bias of 0, 2.5, 5 V, respectively

算不同电压下的电场分布。其中,载流子浓度的变化 主要集中在距界面1nm以内的ITO中。电压为0V 时,ITO充当介质,从图3(c)中可以观察到金天线与 金基底之间的磁偶极子谐振。当电压增加到2.5V 时,累积层中ITO的介电常数的实部接近于0,由于 电位移法向分量在Al₂O₃/ITO界面处具有连续性, *E*⊥会变大,光与物质之间实现了更强的相互作用,局 部电场增强倍数增大,如图3(d)所示。电压达到5V 时,ITO表现为完全金属性,内部的电场分量与Al₂O₃ 中的电场分量反平行,进一步改变了磁偶极子工作的 强度和相移曲线,如图3(e)所示。可见,随着电压的 增加,在具有ENZ区域的ITO累积层中产生的电场 将逐渐增强,使得相位调制成为可能。

在不改变结构的情况下,可以通过调制单个栅 压来实现超表面的不同功能。2011年,Yu等^[25]首 次提出并证明了超表面的独特光束偏转功能。广 义Snell定律可以从Fermat定理推导而来:

$$\sin \theta_{\rm r} - \sin \theta_{\rm i} = \frac{\lambda_0}{2\pi n_{\rm i}} \frac{\mathrm{d}\varphi}{\mathrm{d}x} , \qquad (3)$$

式中:dq/dx是界面处相邻单元的相位梯度,这是超 表面相位调制的重要变量; θ, 为反射角; θ, 为人射

角;n;为折射率。只需要设计一个可调制每个单元 相位的相位梯度超表面,即可实现特定频率的光束 弯曲,如图4(a)所示。为了实现在1470 nm工作波 长处以θ₁=-18°的角度偏转光束,需要相同角度倾 斜的相位分布。经过精确地挑选数据,十个单元的 偏压值和具体的数据如表1所示,模拟得到的电场 分布如图 4(b)所示。通过图 4(c)反射电场与角度 θ 之间的关系可以看出,光在偏转角度为一18°下强度 最大,仿真的结果与设计结果完全一致。另外,控 制天线阵列中的单个纳米天线的想法为设计聚焦 透镜提供了机会。与负超透镜[26-28]相比,设计聚焦 透镜时,只需改变栅压,而不需要重新设计结构尺 寸,就可以任意改变焦距的长度,因此方便于实际 应用。基于超表面设计的宽带、高效、高数值孔径 镜头正在推动成像技术、新型通信技术、偏转检测 技术的集成化与小型化的发展。超透镜需要满足 双曲线型相位分布才能实现聚焦功能,超表面可以 通过亚波长谐振器单元辐射出的二次波在交点处 发生相长干涉,从而实现聚焦波阵面,这种聚焦与 传统方法类似。假设超表面在xoy平面内,焦距为 f,超表面上的任一点需要提供突变相位:

图 4 偏转、聚焦的实际应用。(a)电可调反射阵列天线示意图;(b)弯曲角度为一18°的电场分布;(c)反射强度与角度的仿真 关系;(d)焦距为6λ的电场分布

Fig. 4 Practical applications of deflection and focusing. (a) Schematic of the electrically tunable reflectarray antenna;
(b) simulated electric field distribution with the bending angle of -18°; (c) simulated relationship between the reflection amplitude and the angle; (d) electric field distribution at focal length of 6λ

表1 偏转应用中每个天线的相位和电压值 Table 1 Phase and voltage values of each antenna in deflection applications

2.12

2.46

2.82

				0		11				
Number	1	2	3	4	5	6	7	8	9	10
Phase $/(^{\circ})$	-52	-23	6	35	64	93	122	151	180	209

1.76

$$\varphi(r,f) = \frac{2\pi}{\lambda} \left(\sqrt{r^2 + f^2} - f \right), \qquad (4)$$

1.35

0.8

式中:任一点离原点的距离 $r = \sqrt{x^2 + y^2}$;2 π/λ 为空 间波矢量大小。由于亚波长谐振器具有空间结构, 因此必须用离散化的方程式提供连续的相位分布。 图 4(d)显示了由 48个晶胞组成的超表面的反射电 场的幅度的模拟分布,周期为 400 nm,工作波长为 1470 nm,证实聚焦结果也与设计的焦距f完全一 致。偏转和聚焦的结果说明,电可调 ITO 超表面在 主动实时控制领域具有显著的应用前景。

0

Voltage /V

另一方面,尽管 MOS 结构可以实现对光束的 调制,但是不能覆盖2π相位,导致模拟过程中存在 一些近似,从而不可避免地使聚焦产生的焦斑过 大。因此,设计了双栅型超表面来进一步扩大相位 调控范围。为了增加ITO 与电极之间的接触面积, 采用了改进的十字状天线(宽度 w₁=120 nm,长度 *l*=280 nm)。如图 5(a) 所示,在 ITO 两侧施加偏 压,以形成双栅极 MOS 结构,每个有源超表面天线 的介质层中将存在两个电荷积累层和耗尽层。通 过对结构进行参数的扫描,找到其谐振波长λ为 1500 nm。同样,通过改变顶端和底部界面处的载 流子密度,可以实现对ITO介电常数的控制。从 图 5(b)可以清楚看到,ITO/Al₂O₃界面处的介电常 数始终与十字状天线下方的顶部界面处的介电常 数完全相等。在对ITO的复介电常数关于位置与 电压大小的函数进行建模之后,计算了垂直入射的 横磁极化平面波在不同电压下的超表面的光学响 应。电磁场分布表明,将强光限制在等离激元天线 的介电间隙会极大地有助于观察到光的调制。另 外,从图5(d)也可以清晰地看到,在波长1500 nm处 实现了大约300°的相位覆盖,相比于单MOS结构, 有了100°的提高。

3.21

3.72

4.55

图5 双栅型超表面。(a)超表面单元示意图,天线阵列、介质层、ITO层和金反射层的厚度分别是 t_1 =50 nm, t_2 =9.5 nm, t_3 = 5 nm和 t_4 =80 nm,电极宽度 w_2 =170 nm;(b)载流子分布的仿真结果;(c)ITO介电常数实部随所加电压与位置的变化; (d)在 λ =1500 nm ψ ,不同电压下的最大相位

Fig. 5 Double-gated metasurface. (a) Schematic of the unit cell of the double-gated metasurface, the thicknesses of the antenna array, the gate dielectrics, the ITO layer, and the back reflector are $t_1 = 50$ nm, $t_2 = 9.5$ nm, $t_3 = 5$ nm, and $t_4 = 80$ nm, respectively, and the electrode width is $w_2 = 170$ nm; (b) simulated result of charge carrier distribution; (c) real part of the dielectric permittivity of the ITO as a function of the applied voltage and position; (d) maximum phase achieved under different voltages at $\lambda = 1500$ nm

4 结 论

设计了基于 ITO 材料的 MOS 结构超表面,通 过电压可对 ITO 表面的载流子浓度进行调制,随着 电压的增加,其介电常数实部实现由正到负的转 变,从而实现了偏转与聚焦的应用。在此基础上, 设计了双栅型超表面,实现了在 1500 nm 处约 300° 的相位覆盖,显著提高了相位覆盖的范围。这种电 可调超表面展现了近红外区域的多种功能,如偏转 与聚焦,它们将在设计和演示未来可动态配置的薄 型光学组件(如具有可重新配置焦距的聚焦透镜、 动态全息图和光束转向设备)中有着显著的应用 前景。

参考文献

- Mollaei M S M, Simovski C. Dual-metasurface superlens: a comprehensive study[J]. Physical Review B, 2019, 100(20): 205426.
- [2] Cui Y, Zheng G X, Chen M, et al. Reconfigurable continuous-zoom metalens in visible band[J]. Chinese Optics Letters, 2019, 17(11): 111603.
- [3] Luo Y, Wang W T, Zhao P J, et al. Dual-mode

metasurface of polarization-specific focusing and keeping wavefront[J]. Chinese Journal of Lasers, 2020, 47(3): 0301007.

罗宇,王文涛,赵鹏九,等.偏振特异的聚焦和波前保持的双模超表面[J].中国激光,2020,47(3):0301007.

- [4] Zheng G, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312.
- [5] Hu Z, Xu T, Tang R, et al. Geometric-phase metasurfaces: from physics to applications[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202408.
 胡中,徐涛,汤蓉,等.几何相位电磁超表面:从原理 到应用[J]. 激光与光电子学进展, 2019, 56(20): 202408.
- [6] Yin X B, Ye Z L, Rho J, et al. Photonic spin Hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405-1407.
- [7] Liu K T, Liu X, Ge Y H, et al. Generation of orbital angular momentum vortex beams based on high-efficiency transmission metasurfaces[J]. Acta Optica Sinica, 2019, 39(1): 0126016.
 刘凯婷,刘鑫,葛悦禾,等.基于高效传输型超表面 轨道角动量涡旋波束的产生[J]. 光学学报, 2019, 39

(1): 0126016.

- [8] Chen H T, Padilla W J, Cich M J, et al. A metamaterial solid-state terahertz phase modulator [J]. Nature Photonics, 2009, 3(3): 148-151.
- [9] Zhou Y, Chen L W, Du Z R, et al. Tunable optical nonlinearity of silicon nanoparticles in solid state organic matrix[J]. Optical Materials Express, 2015, 5(7): 1606-1612.
- [10] Rahmani M, Xu L, Miroshnichenko A E, et al. Reversible thermal tuning of all-dielectric metasurfaces
 [J]. Advanced Functional Materials, 2017, 27(31): 1700580.
- [11] Fan Y C, Shen N H, Koschny T, et al. Tunable terahertz meta-surface with graphene cut-wires[J]. ACS Photonics, 2015, 2(1): 151-156.
- [12] Yuan Y H, Chen X Y, Hu F R, et al. Terahertz amplitude modulator based on metasurface/ion-gel/ graphene hybrid structure[J]. Chinese Journal of Lasers, 2019, 46(6): 0614016.
 袁莹辉,陈勰宇,胡放荣,等.基于人工超表面/离子 凝胶/石墨烯复合结构的太赫兹调幅器件[J]. 中国激 光, 2019, 46(6): 0614016.
- [13] Komar A, Paniagua-Domínguez R, Miroshnichenko A, et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics, 2018, 5(5): 1742-1748.
- [14] Song Z Y, Wei M L, Wang Z S, et al. Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces[J]. IEEE Photonics Journal, 2019, 11(2): 1-7.
- [15] Sun K, Riedel C A, Wang Y D, et al. Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft [J]. ACS Photonics, 2018, 5(2): 495-501.
- [16] Rajak S, Ray M. Comparative study of plasmonic resonance in transparent conducting oxides: ITO and AZO[J]. Journal of Optics, 2014, 43(3): 231-238.
- [17] Chen C N, Wang Z W, Wu K, et al. Tunable nearinfrared epsilon-near-zero and plasmonic properties of Ag-ITO co-sputtered composite films[J]. Science and Technology of Advanced Materials, 2018, 19(1):

174-184.

- [18] Maki K, Komiya N, Suzuki A. Fabrication of thin films of ITO by aerosol CVD[J]. Thin Solid Films, 2003, 445(2): 224-228.
- [19] Comin A, Manna L. New materials for tunable plasmonic colloidal nanocrystals[J]. Chemical Society Reviews, 2014, 43(11): 3957-3975.
- [20] Alipour A, Farmani A, Mir A. High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface[J]. IEEE Sensors Journal, 2018, 18(17): 7047-7054.
- [21] Klein A, Körber C, Wachau A, et al. Transparent conducting oxides for photovoltaics: manipulation of fermi level, work function and energy band alignment [J]. Materials, 2010, 3(11): 4892-4914.
- [22] Fujiwara H, Kondo M. Effects of carrier concentration on the dielectric function of ZnO:Ga and In₂O₃:Sn studied by spectroscopic ellipsometry: analysis of freecarrier and band-edge absorption[J]. Physical Review B, 2005, 71(7): 075109.
- [23] Huang C P, Yin X G, Zhang Y, et al. Deep subwavelength Fabry-Perot-like resonances in a sandwiched reflection grating[J]. Physical Review B, 2012, 85(23): 235410.
- [24] Dolling G, Enkrich C, Wegener M, et al. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials[J]. Optics Letters, 2005, 30(23): 3198-3200.
- [25] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.
- [26] Zhang Z R, Wen D D, Zhang C M, et al. Multifunctional light sword metasurface lens[J]. ACS Photonics, 2018, 5(5): 1794-1799.
- [27] Li R Z, Guo Z Y, Wang W, et al. Arbitrary focusing lens by holographic metasurface[J]. Photonics Research, 2015, 3(5): 252-255.
- [28] Wang S, Lai J, Wu T, et al. Wide-band achromatic flat focusing lens based on all-dielectric subwavelength metasurface[J]. Optics Express, 2017, 25(6): 7121-7130.